Fires and explosions of particulates have caused, and continue to cause, substantial financial loss and loss of life. This Chapter provides knowledge and insight into preventing or at least mitigating particulate fire and explosion hazards and risks. To this end we distinguish between the concepts hazard and risk, first discussing in some detail the nature of fire and explosion hazards of particulates, the indexes expressing these hazards, the many factors that determine such hazards, and a widely used and internationally accepted system for ranking fire and explosion hazards of particulates. All of these topics relate to a given particulate; i.e., a particulate of a given chemical composition and given physical form (e.g., particle shape and size distribution). We next discuss fire and explosion risks of particulates. Risk is a much more extensive and complex topic than hazard, as risk involves factors extensive to the particulate itself, such as: amounts of particulate; where (region, country) it is made, transported, and stored; the (process) conditions under which it is made, transported, and stored; relevant legislation; and management. Rather than discuss the complex topic of particulate risk as such, we concentrate on a number of fundamental approaches to reduce risk, approaches which are increasingly applied in modern (chemical) engineering design. One general method to reduce risk is to negate the basic factors causing risk. This is the basic logic of Inherently Safer Design (ISD), which, essentially, aims at avoiding or at least greatly reducing hazard by clever design/choice of materials, process, and conditions. Inherently Safer Design forms the starting point of designing layers of defense against mishap. The analysis of the degree of risk reduction by the layers is called Layers of Protection Analysis (LOPA). LOPA recognizes that in practice Inherently Safe Design rarely can eliminate all hazards. Thus, starting from the