The frequency of cells containing micronuclei (MN) and the presence of centromeres in these MN were analyzed in lymphocytes of 98 men from Southern Bohemia. Forty-six of them had worked at the uranium processing plant ‘MAPE Mydlovary' which was closed in 1991, and 52 men were controls from the same area. FISH using human pan-centromeric chromosome paint was employed to detect centromere-positive (CEN+) and -negative (CEN-) MN. A total of 1,000 binucleated cells (BNC) per participant were analyzed after cytochalasin B treatment. All BNC with MN (CEN+ or CEN-) were recorded. No differences were found between formerly exposed workers and the control group, neither in the total frequency of cells with MN per 1,000 BNC (mean levels ± SD, 9.1 ± 3.1 and 9.8 ± 2.5, respectively) nor in the percentage of CEN- MN, which were equal (50 ± 18 and 49 ± 17, respectively). Also, there was no difference between individuals living in the 3 villages closest to the uranium processing plant and those living further away. Considering the fact that effective doses of the workers at MAPE Mydlovary were overall similar to those of former uranium miners in whom higher frequencies of CEN- MN have been found more than 10 years after they had finished working underground, these results are somewhat surprising. A more detailed analysis of the exposures indicates that uranium miners received a greater percentage of their effective dose from the inhalation of radon and its daughters, whereas uranium processing workers received it from the incorporation of long-lived radioactive nuclides such as uranium. If, as has been suggested before, the higher level of DNA damage in miners is due to induced genomic instability, then this phenomenon may be related to radon exposure rather than exposure to uranium.