This study presents the design and comprehensive 3D multiphysics simulation of a novel microfluidic immunosensor for non-invasive, real-time detection of pro-inflammatory biomarkers in human sweat. The patch-like device integrates magnetofluidic manipulation of antibody-functionalized magnetic nanoparticles (MNPs) with direct-field capacitive sensing (DF-CS). This unique combination enhances sensitivity, reduces parasitic capacitance, and enables a more compact design compared to traditional fringing-field approaches. A comprehensive 3D multiphysics simulation of the device, performed using COMSOL Multiphysics, demonstrates its operating principle by analyzing the sensor’s response to changes in the dielectric properties of the medium due to the presence of magnetic nanoparticles. The simulation reveals a sensitivity of 42.48% at 85% MNP occupancy within the detection zone, highlighting the sensor’s ability to detect variations in MNP concentration, and thus indirectly infer biomarker levels, with high precision. This innovative integration of magnetofluidic manipulation and DF-CS offers a promising new paradigm for continuous, non-invasive health monitoring, with potential applications in point-of-care diagnostics, personalized medicine, and preventive healthcare.