Wind power is positioned as one of the fastest-growing energy sources today, while also being a mature technology with a strong capacity for creating employment and guaranteeing environmental sustainability. However, the stochastic nature of wind may affect the integration of power plants into power systems and the availability of generation capacity. In this sense, as in the case of conventional power plants, wind power installations should be able to help maintain power system stability and reliability. To help achieve this objective, a significant number of countries have developed so-called grid interconnection agreements. These are designed to define the technical and behavioral requirements that wind power installations, as well as other power plants, must comply with when seeking connection to the national network. These documents also detail the tasks that should be conducted to certify such installations, so these can be commercially exploited. These certification processes allow countries to assess wind turbine and wind power plant simulation models. These models can then be used to estimate and simulate wind power performance under a variety of scenarios. Within this framework, and with a particular focus on the new Spanish grid code, the present paper addresses the validation process of dynamic wind turbine models followed in three countries—Spain, Germany and South Africa. In these three countries, and as a novel option, it has been proposed that these models form part of the commissioning and certification processes of wind power plants.