A common choice for the marginal distribution of a bivariate count time series is the bivariate Poisson distribution. In practice, however, when the count data exhibit zero inflation, overdispersion or non-stationarity features, such that a marginal bivariate Poisson distribution is not suitable. To test the discrepancy between the actual count data and the bivariate Poisson distribution, we propose a new goodness-of-fit test based on a bivariate dispersion index. The asymptotic distribution of the test statistic under the null hypothesis of a first-order bivariate integer-valued autoregressive model with marginal bivariate Poisson distribution is derived, and the finite-sample performance of the goodness-of-fit test is analyzed by simulations. A real-data example illustrate the application and usefulness of the test in practice.