This study explores the potential application of microfluidics in the field of bioenergy, with a particular focus on the energy potential of biogas derived from vine shoots, a locally abundant waste material. The enhanced mixing capability of a micromixer has been analyzed to make it suitable for microfluidic energy applications. Mixing index, pressure drop, and kinematic measurements within the T-micromixer with helical elements and their related mixing performances have been studied and validated using CFD for different values of Reynolds number (0.1–60) for laminar Newtonian miscible fluid. Geometrical characteristics were further examined to improve the mixing performance. Various values of twisted angles were evaluated and compared to choose the optimal angle. A new parameter, Q, was introduced to represent the ratio of vorticity square over the sum of vorticity square and deformation square intensities. Furthermore, the results of the numerical simulation were compared with the given data in the literature, showing a significant agreement, in addition to the fact that a high-quality mixture can be created with a geometry angle of 90°, and a mixing index above 0.99 can be obtained at low Reynolds numbers. The numerical investigation of the flow regimes of miscible fluid in the T-microkenics with the proposed angle can be utilized to develop the mixing performance of the micromixers in a wide variety of processes.