2023
DOI: 10.1016/j.atech.2022.100102
|View full text |Cite
|
Sign up to set email alerts
|

A review of machine learning techniques for identifying weeds in corn

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
8
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
7
2
1

Relationship

0
10

Authors

Journals

citations
Cited by 26 publications
(9 citation statements)
references
References 57 publications
0
8
0
1
Order By: Relevance
“…They trained an SVM model to differentiate the monocotyledon weeds, Ageratum conyzoides, and Amaranthus palmeri weeds from other weeds for selective spraying. Many other studies have also utilized the different versions of SVMs and discussed their advantages [60,61].…”
Section: Support Vector Classificationmentioning
confidence: 99%
“…They trained an SVM model to differentiate the monocotyledon weeds, Ageratum conyzoides, and Amaranthus palmeri weeds from other weeds for selective spraying. Many other studies have also utilized the different versions of SVMs and discussed their advantages [60,61].…”
Section: Support Vector Classificationmentioning
confidence: 99%
“…Different from the approach in previous work [ 40 ], this research does not focus on developing a novel classification algorithm, which is why the well-established U-Net architecture was employed for weed segmentation. The U-Net’s strong feature learning capabilities and automatic feature extraction allow for easy scaling to new datasets, making it highly suitable for real-world applications [ 10 , 22 , 41 ]. The pixel-based classifications generated by this dense semantic segmentation framework serve as a valuable data source for autonomous weed control based on precise localization information.…”
Section: Introductionmentioning
confidence: 99%
“…Ruiz, Trasviña, Rojas. Detección de enfermedades en cultivos de maíz mediante imágenes con visión artificial: un caso práctico Para generar entornos de diagnóstico con IA se ha generado investigación continuamente como lo expuesto por (Venkataraju, et al, 2023) quienes plantean el estudio de las investigaciones existentes con uso de modelos de aprendizaje automático para identificar tipos de maleza en los cultivos. Los autores buscaron aquellas aplicaciones que realizan una correcta clasificación e intervención de crecimientos de hierba invasora.…”
Section: Introductionunclassified