2021
DOI: 10.1016/j.media.2020.101905
|View full text |Cite
|
Sign up to set email alerts
|

A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
58
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 118 publications
(60 citation statements)
references
References 201 publications
(123 reference statements)
1
58
0
1
Order By: Relevance
“…There are many publicly available databases for retinal vessel segmentation [10]. Here we just introduce several main databases.…”
Section: Database and Evaluation Metrics For Retinal Vessel Segmentationmentioning
confidence: 99%
See 2 more Smart Citations
“…There are many publicly available databases for retinal vessel segmentation [10]. Here we just introduce several main databases.…”
Section: Database and Evaluation Metrics For Retinal Vessel Segmentationmentioning
confidence: 99%
“…Several supervised and unsupervised methods are developed and used to automate the segmentation of retinal vessels. Earlier, unsupervised methods are the most common approach for automatically segmenting the retinal vessels, which do not rely on any annotation for segmentation [9,10]. These methods are roughly divided into matching filter [11][12][13], vascular tracing based segmentation [14][15][16] and modelbased segmentation methods [17].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…However, the monitoring of DR is executed manually which is time consuming. The automated screening of DR can overcome the manual screening that can filter out healthy obvious samples and indicates only suspected cases to ophthalmologists [ 7 , 8 ].…”
Section: Introductionmentioning
confidence: 99%
“…Evrişimli sinir agının çok katmanlı özellik çıkarımı ,görüntü üzerie uygulanan farklı filtreler ile, agın katmanları boyunca taşınan öz niteliklerinden görüntü ile ilgili önemli özelliklerin ortaya çıkarılmasını saglamaktadır. Derin ögrenmedeki bu gelişim, hücre ve damar görüntülerin bölütlenmesine uyarlanmıştır [3], [4]. Genel olarak biyomedikal görüntülerin analizinde, yüksek başarım oranında bölütleme sonucu veren bir derin sinir agı modeli olan U-Net modelinin kullanıldıgı görülmektedir [5], [6].…”
Section: Introductionunclassified