In the last few decades, there has been a significant increase in interest in developing, constructing, and using structural health monitoring (SHM) systems. The classic monitoring system should, by definition, have, in addition to the diagnostic module, a module responsible for monitoring loads. These loads can be measured with piezoelectric force sensors or indirectly with strain gauges such as resistance strain gauges or FBG sensors. However, this is not always feasible due to how the force is applied or because sensors cannot be mounted. Therefore, methods for identifying excitation forces based on response measurements are often used. This approach is usually cheaper and easier to implement from the measurement side. However, in this approach, it is necessary to use a network of response sensors, whose installation and wiring can cause technological difficulties and modify the results for slender constructions. Moreover, many load identification methods require the use of multiple sensors to identify a single force history. Increasing the number of sensors recording responses improves the numerical conditioning of the method. The proposed article presents the use of contactless measurements carried out with the help of a high-speed camera to identify the forces exiting the object.