2024
DOI: 10.3390/appliedmath4030059
|View full text |Cite
|
Sign up to set email alerts
|

A Review of Optimization-Based Deep Learning Models for MRI Reconstruction

Wanyu Bian,
Yokhesh Krishnasamy Tamilselvam

Abstract: Magnetic resonance imaging (MRI) is crucial for its superior soft tissue contrast and high spatial resolution. Integrating deep learning algorithms into MRI reconstruction has significantly enhanced image quality and efficiency. This paper provides a comprehensive review of optimization-based deep learning models for MRI reconstruction, focusing on recent advancements in gradient descent algorithms, proximal gradient descent algorithms, ADMM, PDHG, and diffusion models combined with gradient descent. We highli… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 100 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?