a b s t r a c tIn the current study, an environmental benign process namely mechanochemical approach was developed for cobalt and lithium recovery from spent lithium-ion batteries (LIBs). The main merit of the process was that neither corrosive acid nor strong oxidant was applied. In the proposed process, lithium cobalt oxide (obtained from spent LIBs) was firstly co-grinded with various additives in a hermetic ball milling system, then Co and Li could be easily recovered by a water leaching procedure. It was found that EDTA was the most suitable co-grinding reagent, and 98% of Co and 99% of Li were respectively recovered under optimum conditions: LiCoO 2 to EDTA mass ratio 1:4, milling time 4 h, rotary speed 600 r/min and ball-to-powder mass ratio 80:1, respectively. Mechanisms study implied that lone pair electrons provided by two nitrogen atoms and four hydroxyl oxygen atoms of EDTA could enter the empty orbit of Co and Li by solid-solid reaction, thus forming stable and water-soluble metal chelates Li-EDTA and Co-EDTA. Moreover, the separation of Co and Li could be achieved through a chemical precipitation approach. This study provides a high efficiency and environmentally friendly process for Co and Li recovery from spent LIBs.