Flow ultrasound generators are devices that emit high-frequency sound waves due to the hydrodynamic instability of the supersonic flow. In the electric power industry, such generators are used in arc quenching systems of high-voltage gas blast circuit breakers. The design of the flow ultrasound generator includes a nozzle and a hollow cylindrical resonator. Self-oscillations of the sealing waves occur when a supersonic gas jet collides with a resonator. This article is devoted to the analysis of the arrester operation, which has design features of flow ultrasound generators. The paper includes both experimental investigations of the proposed spark gap arrester design and mathematical modeling of the processes occurring in it. A description of the methods used is presented, and a comparison of the time dependences of currents and voltages obtained as a result of experimental studies and as a result of calculations is performed in the next section. The calculation results include oscillograms of the voltage and current, and the plasma temperature distribution in the arrester chamber at different moments of time. The investigations show that the presence of a nozzle and resonator leads to an intensification of the gas dynamic effect on the electric arc.