This article provides a comprehensive overview of state-of-the-art techniques for detecting and diagnosing stator winding inter-turn short faults (ITSFs) in permanent-magnet synchronous motors (PMSMs) for electric vehicles (EVs). The review focuses on the following three main categories of diagnostic approaches: motor model-based, signal processing-based, and artificial intelligence (AI)-based fault detection and diagnosis methods. Motor model-based methods utilize motor state estimation and motor parameter estimation as the primary strategies for ITSF diagnosis. Signal processing-based techniques extract fault signatures from motor measured data across time, frequency, or time-frequency domains. In contrast, AI-based methods automatically extract higher-order fault signatures from large volumes of preprocessed data, thereby enhancing the effectiveness of fault diagnosis. The strengths and limitations of each approach are thoroughly examined, providing valuable insights into the advancements in ITSF detection and diagnosis techniques for PMSMs in EV applications. The emphasis is placed on the application of signal processing methods and deep learning techniques in the diagnosis of ITSF in PMSMs in EV applications.