Monitoring fetal heart rate (FHR) through cardiotocography is crucial for the early diagnosis of fetal distress situations, necessitating prompt obstetrical intervention. However, FHR signals are often marred by various contaminants, making preprocessing techniques essential for accurate analysis. This scoping review, following PRISMA-ScR guidelines, describes the preprocessing methods in original research articles on human FHR (or beat-to-beat intervals) signal preprocessing from PubMed and Web of Science, published from their inception up to May 2021. From the 322 unique articles identified, 54 were included, from which prevalent preprocessing approaches were identified, primarily focusing on the detection and correction of poor signal quality events. Detection usually entailed analyzing deviations from neighboring samples, whereas correction often relied on interpolation techniques. It was also noted that there is a lack of consensus regarding the definition of missing samples, outliers, and artifacts. Trends indicate a surge in research interest in the decade 2011–2021. This review underscores the need for standardizing FHR signal preprocessing techniques to enhance diagnostic accuracy. Future work should focus on applying and evaluating these methods across FHR databases aiming to assess their effectiveness and propose improvements.