We provide a systematic overview of the mechanochemical reactions of inorganic solids, notably simple binary compounds, such as oxides, nitrides, carbides, sulphides, phosphides, hydrides, borides, borane derivatives, and related systems. Whereas the solid state has been traditionally considered to be of little synthetic value by the broader community of synthetic chemists, the solid-state community, and in particular researchers focusing on the reactions of inorganic materials, have thrived in building a rich and dynamic research field based on mechanically-driven transformations of inorganic substances typically seen as inert and high-melting. This review provides an insight into the chemical richness of such mechanochemical reactions and, at the same time, offers their tentative categorisation based on transformation type, resulting in seven distinct groupings: (i) the formation of adducts, (ii) the reactions of dehydration; (iii) oxidation–reduction (redox) reactions; (iv) metathesis (or exchange) reactions; (v) doping and structural rearrangements, including reactions involving the reaction vessel (the milling jar); (vi) acid–base reactions, and (vii) other, mixed type reactions. At the same time, we offer a parallel description of inorganic mechanochemical reactions depending on the reaction conditions, as those that: (i) take place under mild conditions (e.g., manual grinding using a mortar and a pestle); (ii) proceed gradually under mechanical milling; (iii) are self-sustained and initiated by mechanical milling, i.e., mechanically induced self-propagating reactions (MSRs); and (iv) proceed only via harsh grinding and are a result of chemical reactivity under strongly non-equilibrium conditions. By elaborating on typical examples and general principles in the mechanochemistry of hard and high-melting substances, this review provides a suitable complement to the existing literature, focusing on the properties and mechanochemical reactions of inorganic solids, such as nanomaterials and catalysts.