Conventional strain gauges are not designed for accurate measurement over the large range of deformations possible in compliant textiles. The thin, lightweight, and flexible nature of textiles also makes it challenging to attach strain gauges in a way that does not affect the mechanical properties. In this manuscript, soft, highly extensible fibers that propagate light (i.e., stretchable lightguides) are stitched as a strain gauge to map the deformation of a nylon parachute textile under tension. When under load, these fiber optic strain gauges propagate less light, and this strain‐induced light modulation is used to accurately (absolute error≈2.93%; Std. Dev.: 3.02%) measure strain in the <30% range before these textiles fail. This system has directionality; strain in parallel to the sensor results in little light attenuation while perpendicular loading shows high sensitivity (Gauge factor⊥≈24.8 and Gauge factor||≈0.05 at the first 1% strain). Structural and optical simulations are coupled to demonstrate that load transfer on the fiber optic by the stitchwork is the dominating cause of signal modulation. To further validate the hypotheses, digital image correlation was used under dynamic loading conditions to show that these sensors do not significantly affect the mechanical properties.