Abstract. HF radar observations of mid-latitude sporadic-E irregularities carried out with the Valensole radar in South France are compared with simultaneous ionosonde measurements underneath the irregularity zones. In a previous study of Valensole radar data, it has been shown that HF backscatter from the night-time mid-latitude E region is usually associated with largescale wave-like modulations. To obtain more information on the geophysical conditions prevailing during backscatter events, a new experiment was performed which also included a vertical ionosonde beneath the scattering region. The data to be presented here are from two periods when radar scattering appeared simultaneously with large variations in the virtual height and the Doppler velocity of F-layer re¯ected echoes measured with the vertical ionosonde, indicating very clearly the passage of atmospheric gravity waves (AGWs). The e ect of the atmospheric waves on the sporadic-E layer is not always as marked as it is in the F region. In the ®rst event, the passage of the AGWs is accompanied by an upward followed by a downward movement of the Es-layer. The apparent descending movement of the Es-layer from 135 to 110 km in less than 10 min corresponded to a positive (downward) Doppler velocity of 35 m/s measured by the vertical ionosonde, and was accompanied by a range variation in the radar scattering region with a negative rate of about 90±110 m/s. In the second event, the Es-layer is not as strongly disturbed as in the previous one, but, nevertheless, the range variations of the scattering region can still be associated with height¯uctuations of the Es-layer.