The current research proposes the idea of using water-saturated metal oxide foams and water-based nanofluids as solar absorber in the direct absorption solar collectors (DASCs). Specifically, the novel solar collector design utilizes copper oxide (CuO) porous foam and nanoparticle with high optical properties and is expected to have enhanced thermal performance than the conventional collectors utilizing pure water. The finite volume technique is used to solve the governing equations of flow and heat transfer in the radiative participating media. Also, to establish the reliability and accuracy of numerical solutions, the obtained results are compared with the corresponding numerical and experimental data. The computations are carried out for different nanoparticle volume fractions, foam pore sizes, working fluid mass flow rates, and both porous layer thicknesses and positions (inserted at the lower or upper wall of the collector). It is found that the efficiency of DASC partially/fully filled with metal oxide foam is maximized when the collector is completely filled with it. Compared with the water flow, the numerical results show that the collector efficiency using CuO nanofluid and metal oxide foam is improved by up to 26.8% and 23.8%, respectively. Moreover, considering the second law of thermodynamics, the use of CuO nanofluids in the DASC seems to be more effective than the use of CuO porous foam.
K E Y W O R D Sdirect absorption solar collector, efficiency, metal oxide foam, nanofluid, second law of thermodynamics