A Review of Symbolic, Subsymbolic and Hybrid Methods for Sequential Decision Making
Carlos Núñez-Molina,
Pablo Mesejo,
Juan Fernández-Olivares
Abstract:In the field of Sequential Decision Making (SDM), two paradigms have historically vied for supremacy: Automated Planning (AP) and Reinforcement Learning (RL). In the spirit of reconciliation, this paper reviews AP, RL and hybrid methods (e.g., novel learn to plan techniques) for solving Sequential Decision Processes (SDPs), focusing on their knowledge representation: symbolic, subsymbolic or a combination. Additionally, it also covers methods for learning the SDP structure. Finally, we compare the advantages a… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.