Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This review provides a comprehensive exploration of the current research landscape surrounding nanoclay-reinforced epoxy composites. A primary challenge in developing these nanocomposites is the hydrophilic nature of pristine clay, which hinders its dispersion within the epoxy matrix. To address this issue, organic modifiers are frequently employed to enhance clay compatibility and facilitate effective incorporation into the nanocomposite structure. The unique properties of nanoclay make it a particularly attractive reinforcement material. The performance of nanoclay/epoxy nanocomposites is largely determined by their morphology, which is influenced by various factors including processing methods, clay types, modifiers, and curing agents. A thorough understanding and control of these parameters are essential for optimizing nanocomposite performance. These advanced materials find extensive applications across multiple industries, including aerospace, defense, anti-corrosive coatings, automotive, and packaging. This review offers an in-depth analysis of the processing techniques, mechanical properties, barrier capabilities, and thermal characteristics of nanoclay-reinforced epoxy nanocomposites. Additionally, it explores their diverse industrial applications, providing a holistic view of their potential and current use. By examining the multifaceted landscape of epoxy/clay nanocomposites, this review illuminates the intricate relationships between fabrication methods, resulting properties, and potential industrial applications. It serves as a comprehensive resource for researchers and practitioners seeking to advance the development and application of these innovative materials.
This review provides a comprehensive exploration of the current research landscape surrounding nanoclay-reinforced epoxy composites. A primary challenge in developing these nanocomposites is the hydrophilic nature of pristine clay, which hinders its dispersion within the epoxy matrix. To address this issue, organic modifiers are frequently employed to enhance clay compatibility and facilitate effective incorporation into the nanocomposite structure. The unique properties of nanoclay make it a particularly attractive reinforcement material. The performance of nanoclay/epoxy nanocomposites is largely determined by their morphology, which is influenced by various factors including processing methods, clay types, modifiers, and curing agents. A thorough understanding and control of these parameters are essential for optimizing nanocomposite performance. These advanced materials find extensive applications across multiple industries, including aerospace, defense, anti-corrosive coatings, automotive, and packaging. This review offers an in-depth analysis of the processing techniques, mechanical properties, barrier capabilities, and thermal characteristics of nanoclay-reinforced epoxy nanocomposites. Additionally, it explores their diverse industrial applications, providing a holistic view of their potential and current use. By examining the multifaceted landscape of epoxy/clay nanocomposites, this review illuminates the intricate relationships between fabrication methods, resulting properties, and potential industrial applications. It serves as a comprehensive resource for researchers and practitioners seeking to advance the development and application of these innovative materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.