During the ship's voyage, the propeller jet affects the movement of silt at the bottom of the bed. To research the influence of the bottom boundary on the propeller jet field, this paper takes the standard propeller DTRC4119 propeller as the research object and uses the CFD software Star-ccm+ to carry out a numerical simulation of the propeller jet under uniform flow. The flow velocity distribution of the jet under four operating conditions is mainly analyzed, including the axial velocity, tangential velocity and radial velocity of the jet. The results show that the distance between the propeller and the boundary does not affect the magnitude and distribution of the velocity on the initial plane but affects the shape of the axial velocity and the velocity on the central axis in the development zone; The closer to the bottom boundary, the greater the disturbance of tangential velocity and radial velocity, the peak value of tangential velocity will be affected and changed from central symmetry of velocity to unanimous trend earlier. The radial velocity contributes less to the overall velocity and can be ignored.