Geochemical compositions of twenty-four sandstone and shale samples from the Ecca Group were analysed to decipher their provenance, paleoweathering conditions and tectonic setting. The shales have high Fe 2 O 3 , K 2 O, TiO 2 , Ce, Cu, Ga, La, Nb, Nd, Rb, Sc, Sr, Th and Y content more than the sandstones, whereas, sandstones are higher in SiO 2 , Hf and Zr than the shales. The positive correlations of Al 2 O 3 with other elements as well as the abundance of Ba, Ce, Th, Rb, Zn and Zr suggest that these elements are primarily controlled by the dominant clay minerals. Tectonic discrimination diagrams revealed that the sandstones and shales are mostly of quartzose sedimentary provenance, suggesting that they were derived from a cratonic interior or recycled orogen. The binary plots of TiO 2 versus Ni, TiO 2 against Zr and La/Th versus Hf as well as the ternary diagrams of V-Ni-Th*10 indicate that the shales and sandstones were derived from felsic igneous rocks. A-CN-K (Al 2 O 3 -CaO-K 2 O) ternary diagram and indices of weathering (CIA, CIW and PIS) suggest that the granitic source rocks underwent moderate to high degree of chemical weathering. The CIA values range between 24.41% and 83.76%, indicating low to high weathering conditions. The CIW values for the studied sandstones and shales range from 25.90 to 96.25%, suggesting moderate to high intensive chemical weathering. ICV values for the sandstones and shales vary from 0.71 to 3.6 (averaging 1.20) and 0.41 to 1.05 (averaging 0.82), respectively. The K 2 O/Na 2 O ratios for the studied samples vary from 0.71 to 8.29, which reveal moderate to high maturity. The plot of CIA against ICV shows that most of the shales are geochemically mature and were derived from both weak and intensively weathered source rocks. The tectonic setting discrimination diagrams support passive-active continental margin setting of the provenance.