Consideration of fiber configuration and the distance between the light source or light meter and the LTC specimen in the previous studies is still limited. The incorporation of plastic optical fiber (POF) into concrete with fiber configurations of 5 ´ 5 and 6 ´ 6 grids is investigated in terms of short wall panel application to study its light intensity and strength properties. The light-transmitting concrete (LTC) short wall panel of 300 mm wide ´ 400 mm high ´ 75 mm thick is cast using self-compacting concrete (SCC) to ensure the flowability of the concrete during mixing. The fresh SCC is tested under slump flow, V-funnel, and L-box to verify its fresh properties, while compression test is carried out at 28-days on cube specimens to determine its compressive strength. Then, light transmittance and axial load test under compression are conducted for the LTC wall panel. The findings show that the light intensity of the LTC wall panel increased with the increased number of fiber configurations. However, regardless of fiber configurations, the light intensity reduced with the increase of both light source and light meter distances. In addition, the ultimate axial load of the LTC wall panel with fiber configurations of 5 ´ 5 and 6 ´ 6 grids are 662 kN and 643 kN, respectively. It implies that the fiber configuration does not affect the axial compression load. Furthermore, both LTC wall panels failed solely under pure compression load.