Micronutrient deficiencies in the diet of many people are common and wheat is a staple food crop, providing a carbohydrate and micronutrient source to a large percentage of the world's population. We conducted a field study to compare five Canadian red spring wheat cultivars (released over the last century) grown under organic and conventional management systems for yield, grain micronutrient concentration, and soil phospholipid fatty acid (PLFA) profile. The organic system had higher grain Zn, Fe, Mg and K levels, but lower Se and Cu levels. There was no trend in the results to suggest that modern western Canadian hard red spring cultivars have lower grain micronutrient content than historical cultivars. Wheat cultivar choice is important for maximizing grain nutrient levels,
OPEN ACCESSSustainability 2011, 3 501 which was influenced by management system. It is evident that the emphasis on elevated grain quality in the western Canadian hard red spring class has resulted in the retention of micronutrient quality characters. Three fungal PLFAs were indicators for the organic system, and all three of these indicators were positively correlated with grain Cu concentration. In the organic system, percent arbuscular mycorrhizal fungi were negatively correlated with grain Zn and Fe concentrations, and positively correlated with grain Mn, Cu, K concentrations and grain yield. The organic system had higher levels of fungi in the soil, including arbuscular mycorrhizal fungi. Organic management practices appear to result in elevated levels of grain micronutrient concentration. The hard red spring breeding effort in and for the black soil zone of the northern Great Plains also appears to have led to no diminishment of grain micronutrient concentration. It is evident that both the agronomic system and breeding strategies in this region can be exploited for future increases in grain micronutrient concentration.