Abstract. At the first order salt structures are controlled by the low flow strength of evaporites and by the tectonic boundary conditions. Rheological contrasts within an evaporite body have an important effect on the evolution of the internal structure of salt, but how this mechanical layering affects salt deformation at different scales is not well known. The potassium–magnesium salts (K-Mg salts) carnallite and bischofite are prime examples of layers with much lower effective viscosity than rock salt: their low viscosity presents serious drilling hazards but also allows squeeze solution mining. In contrast, anhydrite and carbonate layers (stringers) in salt are much stronger than halite. In this study, we used high-resolution 3-D seismic and well data to study the evolution of the Veendam and Slochteren salt pillows at the southern boundary of the Groningen High, northern Netherlands. Here the rock salt layers contain both the mechanically stronger Zechstein III Anhydrite–Carbonate stringer and the weaker K-Mg salts, providing an example of extreme rheological heterogeneities in salt structures. The internal structure of the two salt pillows shows areas in which the K-Mg salt-rich ZIII 1b layer is much thicker than elsewhere, in combination with a complexly ruptured and folded ZIII Anhydrite–Carbonate stringer. Thickness maps of supra-salt sediments and well data are used to infer the initial depositional architecture of the K-Mg salts and their deformation history. Results suggest that active faulting and the resulting depressions of the Zechstein surface above a Rotliegend graben caused the local accumulation of bittern brines and precipitation of the thick K-Mg salts. During the first phase of salt flow and withdrawal from the Veendam area, under differential loading by Buntsandstein sediments, the ZIII stringer was boudinaged while the lens of Mg salts remained relatively undeformed. This was followed by a convergence stage, when the K-Mg salt-rich layers were deformed with the evolving salt pillows. This deformation was strongly disharmonic and strongly influenced by folding of the underlying, ruptured ZIII stringer, leading to thickening and internal deformation of the carnallite–bischofite layers.