Endophytic fungus is crucial for maintaining plant health and defense mechanisms, acting as protective barriers against pathogens, and producing medicinally beneficial bioactive compounds. Genome sequencing and metagenomics have significantly enhanced the understanding of fungal diversity and metabolic capabilities, enabling the identification of new genes and substances. Traditional culture-dependent methods have been complemented by culture-independent techniques, offering a more comprehensive view of fungal diversity. Using both culture-dependent and culture-independent techniques, the present research investigation explored the diversity of endophytic fungi encountered in the foliage of Hardwickia binata. The study examined the topographical characteristics and nutritional content of soil samples collected from the locality of the selected plant sample, H. binata, to better comprehend the effects on the plant’s growth. The balanced nutrient constituted approximately a pH of 7.2, which suggested an alkaline nature and promoted plant development. The ratio of nitrogen, phosphorous, and potassium remained 3:1:1. A total of 25 fungal isolates, categorized into 17 morphotypes, were obtained using the culture-dependent approach; Curvularia and Nigrospora emerged as the most common genera. Furthermore, the prediction of the ITS2 secondary structure supports the identification of species, highlighting a wide variety of fungal species present in H. binata. The culture-independent approach generated 69,570 high-quality sequences, identifying 269 Operational Taxonomic Units (OTUs). The dominant Ascomycota phylum, along with various genera, indicated a rich fungal community associated with H. binata. This study advances the understanding of the endophytic fungus communities that are associated with H. binata and the nature of soil ecology. The findings emphasize the significance of holistic techniques in the study of microbial dynamics within plant systems as well as their implications for ecosystem management and plant health.