This study explores how the properties of heater materials impact nucleate pool boiling using a comprehensive simulation model. The model integrates well-known heat transfer mechanisms, allowing us to assess the effects of two distinct heater materials. Findings indicate that materials with higher thermal conductivity, such as copper, notably improve refrigeration efficiency in nucle- ate boiling. The study provides insights into the relationship between bubble growth, microlayer recovery beneath a bubble, temperature fluctuations, and heater properties. Comparisons between copper and silicon oxide underscore variations in bubble frequency, attributed to differences in bubble growth time, microlayer recovery time, and material-dependent behavior. The influence of neighboring bubbling sites, especially pronounced in silicon oxide due to its low thermal conductivity and diffusivity, was observed. Temperature variations in such materials became highly visible due to their significant inertia in recovery. Simulation results align well with empirical correlations, confirming the model’s versatility in capturing the intricate phenomena of nucleate pool boiling.