During the last decade, modern micro-electro-mechanical systems (MEMS) technology has been used to create cells that can act as catalytic nanoreactors and fit into the sample holders of transmission electron microscopes. These nanoreactors can maintain atmospheric or higher pressures inside the cells as they seal gases or liquids from the vacuum of the TEM column and can reach temperatures exceeding 1000 °C. This has led to a paradigm shift in electron microscopy, which facilitates the local characterization of structural and morphological changes of solid catalysts under working conditions. In this review, we outline the development of state-of-the-art nanoreactor setups that are commercially available and are currently applied to study catalytic reactions in situ or operando in gaseous or liquid environments. We also discuss challenges that are associated with the use of environmental cells. In catalysis studies, one of the major challenge is the interpretation of the results while considering the discrepancies in kinetics between MEMS based gas cells and fixed bed reactors, the interactions of the electron beam with the sample, as well as support effects. Finally, we critically analyze the general role of MEMS based nanoreactors in electron microscopy and catalysis communities and present possible future directions.