In this study, an amorphous Ni-13.4Cr-11.6P (mass%) alloy coating with a thickness of 30 μm was deposited on the surface of SUS304 stainless steel as a brazing filler metal to conduct brazing. The differential thermal analysis measurements indicate that the electrodeposited Ni-13.4Cr-11.6P alloy has a melting point of approximately 892 °C, which is almost consistent with that of the commercial BNi-7 filler metal. The microstructure, shear strength, and fracture mode of the brazed joint were investigated using an electron probe X-ray microanalyzer, a scanning electron microscope, an optical microscope, and a universal testing machine. The results showed that the brazed filler metal is filled between the SUS304 stainless steel plates without any flaws in the brazed seam. The P-containing phases, i.e., the Cr-P rich phase and the (Ni,Fe)3P phase, were formed in the brazed seam. The shear strength of the brazed joint obtained in this study is 59.0 MPa. The fracture occurs in the brazed filler zone, where the brittle P-containing phases are present. Galvanic current measurement results showed that the brazed Ni-13.4Cr-11.6P alloy coating has a better corrosion resistance than that of the brazed Ni-11P alloy coating, which can be attributed to the formation of a large amount of Ni-Fe solid solution and Cr-P rich phase in the top layer of the brazed Ni-13.4Cr-11.6P alloy coating.