Despite the rigid public safety protocols of the restaurant sector amid the COVID-19 pandemic in an effort to restart economic activities, customers do not feel secure eating at a sit-in restaurant, which is associated with prolonged restrictions on movement. As a mitigating initiative, holistically evaluating customers’ perceived degree of exposure to COVID-19 in restaurants is deemed relevant in the design of mitigation measures. Such an agenda is associated with multiple attributes under decision-making uncertainty within the framework of multiple criteria sorting (MCS). Thus, this work addresses this problem domain by proposing an intuitionistic fuzzy set extension of the previously developed TOPSIS-Sort (i.e., IF TOPSIS-Sort). As a case demonstration, 40 restaurants are evaluated under six attributes that define exposure to COVID-19. With 250 survey participants, the IF TOPSIS-Sort assigns 10, 13, and 17 restaurants to low, moderate, and high exposure classes, respectively. With this classification, crucial insights are offered to the restaurant industry for planning and policy formulation. To determine its effectiveness, a comparative analysis was carried with other distance-based MCS methods. Findings reveal that the proposed method is pessimistic and that other methods tend to underestimate the assignments, which may be counterintuitive, especially in applications related to public health. These sorting differences may be associated with addressing the vagueness and uncertainty in decision-making within the IF TOPSIS-Sort platform. The proposed novel IF TOPSIS-Sort is sufficiently generic for other domain sorting applications and contributes to the MCS literature.