Polymeric piezoelectric composites for energy harvesting applications are considered a significant research field which provides the convenience of mechanical flexibility, suitable voltage with sufficient power output, lower manufacturing cost, and rapid processing compared to ceramic‐based composites. This review focuses majorly on the basic theory and principles behind piezoelectric energy harvesting (PEH) devices, followed by specified materials used for the different devices. Different structural configurations associated with fabrication of PEH devices are discussed in detail along with their major advantages and drawbacks. Numerous classes of piezoelectric polymers such as polyvinylidene fluoride, polylactic acid, cellulose, polyamides, polyurea, polyurethanes, and their composites used for energy harvesting applications as a productive alternative of lead‐based piezo‐ceramics, are extensively addressed and explored. Additionally, current global and Indian scenarios associated with PEH devices, major challenges associated with them, and the future perspective of such devices are also reported in this review.