2020
DOI: 10.1109/access.2020.3004056
|View full text |Cite
|
Sign up to set email alerts
|

A Review on Recent Progress in Thermal Imaging and Deep Learning Approaches for Breast Cancer Detection

Abstract: Developing a breast cancer screening method is very important to facilitate early breast cancer detection and treatment. Building a screening method using medical imaging modality that does not cause body tissue damage (non-invasive) and does not involve physical touch is challenging. Thermography, a non-invasive and non-contact cancer screening method, can detect tumors at an early stage even under precancerous conditions by observing temperature distribution in both breasts. The thermograms obtained on therm… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
38
0
9

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 108 publications
(47 citation statements)
references
References 99 publications
(85 reference statements)
0
38
0
9
Order By: Relevance
“…Yaşam tarzı faktörlerinin değişmesi, endüstrilerin hızlı büyümesi nedeniyle, kentleşme meme kanseri insidansında kademeli bir artışa neden olmuştur [37]. Meme kanserinin erken teşhisi, uygun tedaviyi sağlayarak kadınların hayatta kalma oranını artırmaktadır [37][38][39]. Termal görüntüleme ile meme asimetrisinin değerlendirilmesi ve uygun yapay zekâ tekniklerinin kullanımı erken teşhiste önemli bir rol oynamaktadır.…”
Section: Meme Kanseriunclassified
See 1 more Smart Citation
“…Yaşam tarzı faktörlerinin değişmesi, endüstrilerin hızlı büyümesi nedeniyle, kentleşme meme kanseri insidansında kademeli bir artışa neden olmuştur [37]. Meme kanserinin erken teşhisi, uygun tedaviyi sağlayarak kadınların hayatta kalma oranını artırmaktadır [37][38][39]. Termal görüntüleme ile meme asimetrisinin değerlendirilmesi ve uygun yapay zekâ tekniklerinin kullanımı erken teşhiste önemli bir rol oynamaktadır.…”
Section: Meme Kanseriunclassified
“…Böylelikle sınıflandırma sonucu çıktı olarak gözlenebilir. Şekil 3, göğüs termogramlarından hasta-sağlıklı ayrımı yapan ESA'ların genel mimarisini göstermektedir [39].…”
Section: Meme Kanseriunclassified
“…Surveys have been conducted in relation to application of automated systems in cancer detection such as computer aided diagnostic systems [66] with precursor attempts appearing in [68], thermography, infrared thermography and electrical impedance tomography [70], highly diversified early attempts at automated systems [71], standards and protocols to Infrared imaging technology for breast cancer detection [72], CNN based thermal imaging for breast cancer detection [79] and various screening tools to detect breast cancer [73]. There are no emphasis on the thermal camera used, image acquisition procedures for mobile phones and public databases.…”
Section: Comparison With Existing Literaturementioning
confidence: 99%
“…The most discriminative features based on wavelet transformation in breast tumor images were obtained. Roslidar et al [12] have introduced the application of CNN in the breast cancer based on thermal images, providing the summary of the current work on thermal images and an overview of the availability of breast thermal images. Juan Zuluaga-Gomez et al [13] proposed a CNN hyperparameters fine-tuning optimization algorithm, identifying the breast cancer through infrared thermal imaging and the classification accuracy is 92%.…”
Section: Introductionmentioning
confidence: 99%