The Analytic Hierarchy Process (AHP) is a powerful multi-criteria and multi-alternative decision-making model, which assists decision-makers in giving preferences using pairwise comparison matrices. The development of the AHP using fuzzy numbers has received attention from many researchers due to the ability of fuzzy numbers to handle vagueness and uncertainty. The integration of the AHP with fuzzy Z-numbers has improved the model since the reliability of the decision-makers is considered, in which the judgment is followed by a degree of certainty or sureness. Most of the existing decision-making models based on Z-numbers transform the Z-numbers into regular fuzzy numbers by integrating the reliability parts into the restriction parts, causing a significant loss of information. Hence, this study develops the AHP based on the magnitude of Z-numbers, which is used to represent the criteria weights. A numerical example of criteria ranking for the prioritization of public services for digitalization is implemented to illustrate the proposed AHP model.