Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study aims to collect GPU rendering programs and analyze their characteristics to construct a benchmark dataset that reflects the characteristics of GPU rendering programs, providing a reference basis for designing the next generation of graphics processors. The research framework includes four parts: GPU rendering program integration, data collection, program analysis, and similarity analysis. In the program integration and data collection phase, 1000 GPU rendering programs were collected from open-source repositories, and 100 representative programs were selected as the initial benchmark dataset. The program analysis phase involves instruction-level, thread-level, and memory-level analysis, as well as five machine learning algorithms for importance ranking. Finally, through Pearson similarity analysis, rendering programs with high similarity were eliminated, and the final GPU rendering program benchmark dataset was selected based on the benchmark’s comprehensiveness and representativeness. The experimental results of this study show that, due to the need to load and process texture and geometry data in rendering programs, the average global memory access efficiency is generally lower compared to the averages of the Rodinia and Parboil benchmarks. The GPU occupancy rate is related to the computationally intensive tasks of rendering programs. The efficiency of stream processor execution and thread bundle execution is influenced by branch statements and conditional judgments. Common operations such as lighting calculations and texture sampling in rendering programs require branch judgments, which reduce the execution efficiency. Bandwidth utilization is improved because rendering programs reduce frequent memory access and data transfer to the main memory through data caching and reuse. Furthermore, this study used multiple machine learning methods to rank the importance of 160 characteristics of 100 rendering programs on four different NVIDIA GPUs. Different methods demonstrate robustness and stability when facing different data distributions and characteristic relationships. By comparing the results of multiple methods, biases inherent to individual methods can be reduced, thus enhancing the reliability of the results. The contribution of this study lies in the analysis of workload characteristics of rendering programs, enabling targeted performance optimization to improve the efficiency and quality of rendering programs. By comprehensively collecting GPU rendering program data and performing characteristic analysis and importance ranking using machine learning methods, reliable reference guidelines are provided for GPU design. This is of significant importance in driving the development of rendering technology.
This study aims to collect GPU rendering programs and analyze their characteristics to construct a benchmark dataset that reflects the characteristics of GPU rendering programs, providing a reference basis for designing the next generation of graphics processors. The research framework includes four parts: GPU rendering program integration, data collection, program analysis, and similarity analysis. In the program integration and data collection phase, 1000 GPU rendering programs were collected from open-source repositories, and 100 representative programs were selected as the initial benchmark dataset. The program analysis phase involves instruction-level, thread-level, and memory-level analysis, as well as five machine learning algorithms for importance ranking. Finally, through Pearson similarity analysis, rendering programs with high similarity were eliminated, and the final GPU rendering program benchmark dataset was selected based on the benchmark’s comprehensiveness and representativeness. The experimental results of this study show that, due to the need to load and process texture and geometry data in rendering programs, the average global memory access efficiency is generally lower compared to the averages of the Rodinia and Parboil benchmarks. The GPU occupancy rate is related to the computationally intensive tasks of rendering programs. The efficiency of stream processor execution and thread bundle execution is influenced by branch statements and conditional judgments. Common operations such as lighting calculations and texture sampling in rendering programs require branch judgments, which reduce the execution efficiency. Bandwidth utilization is improved because rendering programs reduce frequent memory access and data transfer to the main memory through data caching and reuse. Furthermore, this study used multiple machine learning methods to rank the importance of 160 characteristics of 100 rendering programs on four different NVIDIA GPUs. Different methods demonstrate robustness and stability when facing different data distributions and characteristic relationships. By comparing the results of multiple methods, biases inherent to individual methods can be reduced, thus enhancing the reliability of the results. The contribution of this study lies in the analysis of workload characteristics of rendering programs, enabling targeted performance optimization to improve the efficiency and quality of rendering programs. By comprehensively collecting GPU rendering program data and performing characteristic analysis and importance ranking using machine learning methods, reliable reference guidelines are provided for GPU design. This is of significant importance in driving the development of rendering technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.