Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Solid-state batteries (SSBs) hold the potential to revolutionize energy storage systems by offering enhanced safety, higher energy density, and longer life cycles compared with conventional lithium-ion batteries. However, the widespread adoption of SSBs faces significant challenges, including low charge mobility, high internal resistance, mechanical degradation, and the use of unsustainable materials. These technical and manufacturing hurdles have hindered the large-scale commercialization of SSBs, which are crucial for applications such as electric vehicles, portable electronics, and renewable energy storage. This study systematically reviews the global SSB patent landscape using a cross-sectional bibliometric and thematic analysis to identify innovations addressing key technical challenges. The study classifies innovations into key problem and solution areas by meticulously examining 244 patents across multiple dimensions, including year, geographic distribution, inventor engagement, award latency, and technological focus. The analysis reveals significant advancements in electrolyte materials, electrode designs, and manufacturability. This research contributes a comprehensive analysis of the technological landscape, offering valuable insights into ongoing advancements and providing a roadmap for future research and development. This work will benefit researchers, industry professionals, and policymakers by highlighting the most promising areas for innovation, thereby accelerating the commercialization of SSBs, and supporting the transition toward more sustainable and efficient energy storage solutions.
Solid-state batteries (SSBs) hold the potential to revolutionize energy storage systems by offering enhanced safety, higher energy density, and longer life cycles compared with conventional lithium-ion batteries. However, the widespread adoption of SSBs faces significant challenges, including low charge mobility, high internal resistance, mechanical degradation, and the use of unsustainable materials. These technical and manufacturing hurdles have hindered the large-scale commercialization of SSBs, which are crucial for applications such as electric vehicles, portable electronics, and renewable energy storage. This study systematically reviews the global SSB patent landscape using a cross-sectional bibliometric and thematic analysis to identify innovations addressing key technical challenges. The study classifies innovations into key problem and solution areas by meticulously examining 244 patents across multiple dimensions, including year, geographic distribution, inventor engagement, award latency, and technological focus. The analysis reveals significant advancements in electrolyte materials, electrode designs, and manufacturability. This research contributes a comprehensive analysis of the technological landscape, offering valuable insights into ongoing advancements and providing a roadmap for future research and development. This work will benefit researchers, industry professionals, and policymakers by highlighting the most promising areas for innovation, thereby accelerating the commercialization of SSBs, and supporting the transition toward more sustainable and efficient energy storage solutions.
Solid-state batteries (SSBs) offer significant improvements in safety, energy density, and cycle life over conventional lithium-ion batteries, with promising applications in electric vehicles and grid storage due to their non-flammable electrolytes and high-capacity lithium metal anodes. However, challenges such as interfacial resistance, low ionic conductivity, and manufacturing scalability hinder their commercial viability. This study conducts a comprehensive scientometric analysis, examining 131 peer-reviewed SSB research articles from IEEE Xplore and Web of Science databases to identify key thematic areas and bibliometric patterns driving SSB advancements. Through a detailed analysis of thematic keywords and publication trends, this study uniquely identifies innovations in high-ionic-conductivity solid electrolytes and advanced cathode materials, providing actionable insights into the persistent challenges of interfacial engineering and scalable production, which are critical to SSB commercialization. The findings offer a roadmap for targeted research and strategic investments by researchers and industry stakeholders, addressing gaps in long-term stability, scalable production, and high-performance interface optimization that are currently hindering widespread SSB adoption. The study reveals key advances in electrolyte interface stability and ion transport mechanisms, identifying how solid-state electrolyte modifications and cathode coating methods improve charge cycling and reduce dendrite formation, particularly for high-energy-density applications. By mapping publication growth and clustering research themes, this study highlights high-impact areas such as cycling stability and ionic conductivity. The insights from this analysis guide researchers toward impactful areas, such as electrolyte optimization and scalable production, and provide industry leaders with strategies for accelerating SSB commercialization to extend electric vehicle range, enhance grid storage, and improve overall energy efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.