Artificial intelligence (AI) is making notable advancements in the medical field, particularly in bone fracture detection. This systematic review compiles and assesses existing research on AI applications aimed at identifying bone fractures through medical imaging, encompassing studies from 2010 to 2023. It evaluates the performance of various AI models, such as convolutional neural networks (CNNs), in diagnosing bone fractures, highlighting their superior accuracy, sensitivity, and specificity compared to traditional diagnostic methods. Furthermore, the review explores the integration of advanced imaging techniques like 3D CT and MRI with AI algorithms, which has led to enhanced diagnostic accuracy and improved patient outcomes. The potential of Generative AI and Large Language Models (LLMs), such as OpenAI’s GPT, to enhance diagnostic processes through synthetic data generation, comprehensive report creation, and clinical scenario simulation is also discussed. The review underscores the transformative impact of AI on diagnostic workflows and patient care, while also identifying research gaps and suggesting future research directions to enhance data quality, model robustness, and ethical considerations.