With the rapid development of semiconductors, the number of materials needed to be polished sharply increases. The material properties vary significantly, posing challenges to chemical mechanical polishing (CMP). Accordingly, the study aimed to classify the material removal mechanism. Based on the CMP and atomic force microscopy results, the six representative metals can be preliminarily classified into two groups, presumably due to different material removal modes. From the tribology perspective, the first group of Cu, Co, and Ni may mainly rely on the mechanical plowing effect. After adding H2O2, corrosion can be first enhanced and then suppressed, affecting the surface mechanical strength. Consequently, the material removal rate (MRR) and the surface roughness increase and decrease. By comparison, the second group of Ta, Ru, and Ti may primarily depend on the chemical bonding effect. Adding H2O2 can promote oxidation, increasing interfacial chemical bonds. Therefore, the MRR increases, and the surface roughness decreases and levels off. In addition, CMP can be regulated by tuning the synergistic effect of oxidation, complexation, and dissolution for mechanical plowing, while tuning the synergistic effect of oxidation and ionic strength for chemical bonding. The findings provide mechanistic insight into the material removal mechanism in CMP.