In the series of diaminoenones, large high-frequency shifts of the (1)H NMR of the N-H group in the cis-position relative to the carbonyl group suggests strong N-H...O intramolecular hydrogen bonding comprising a six-membered chelate ring. The N-H...O hydrogen bond causes an increase of the (1)J(N,H) coupling constant by 2-4 Hz and high-frequency shift of the (15)N signal by 9-10 ppm despite of the lengthening of the relevant N-H bond. These experimental trends are substantiated by gauge-independent atomic orbital and density functional theory calculations of the shielding and coupling constants in the 3,3-bis(isopropylamino)-1-(aryl)prop-2-en-1-one (12) for conformations with the Z- and E-orientations of the carbonyl group relative to the N-H group. The effects of the N-H...O hydrogen-bond on the NMR parameters are analyzed with the atoms-in-molecules (AIM) and natural bond orbital (NBO) methods. The AIM method indicates a weakening of the N-H...O hydrogen bond as compared with that of 1,1-di(pyrrol-2-yl)-2-formylethene (13) where N-H...O hydrogen bridge establishes a seven-membered chelate ring, and the corresponding (1)J(N,H) coupling constant decreases. The NBO method reveals that the LP(O) --> sigma*(N-H) hyperconjugative interaction is weakened on going from the six-membered chelate ring to the seven-membered one due to a more bent hydrogen bond in the former case. A dominating effect of the N-H bond rehybridization, owing to an electrostatic term in the hydrogen bonding, seems to provide an increase of the (1)J(N,H) value as a consequence of the N-H...O hydrogen bonding in the studied diaminoenones.