BackgroundFor real-time assessment of the probability of survival (Ps) of blunt trauma victims at emergency centers, this study aimed to establish regression models for estimating Ps using simplified coefficients.MethodsThe data of 10,210 blunt trauma patients not missing both the binary outcome data about survival and the data necessary for Ps calculation by The Trauma and Injury Severity Score (TRISS) method were extracted from the Japan Trauma Data Bank (2004-2007) and analyzed. Half (5,113) of the data was allocated to a derivation data set, with the other half (5,097) allocated to a validation data set. The data of 6,407 blunt trauma victims from the trauma registry of Khon Kaen Regional Hospital in Thailand were analyzed for validation. The logistic regression models included age, the Injury Severity Score (ISS), the Glasgow Coma Scale score (GCS), systolic blood pressure (SBP), respiratory rate (RR), and their coded values (cAGE, 0-1; cISS, 0-4; cSBP, 0-4; cGCS, 0-4; cRR, 0-4) as predictor variables. The coefficients were simplified by rounding off after the decimal point or choosing 0.5 if the coefficients varied across 0.5. The area under the receiver-operating characteristic curve (AUROCC) was calculated for each model to measure discriminant ability.ResultsA group of formulas (log (Ps/1-Ps) = logit (Ps) = -9 + cISS - cAGE + cSBP + cGCS + cRR/2, where -9 becomes -7 if the predictor variable of cRR or cISS is missing) was developed. Using these formulas, the AUROCCs were between 0.950 and 0.964. When these models were applied to the Khon Kean data, their AUROCCs were greater than 0.91. Conclusion: These equations allow physicians to perform real-time assessments of survival by easy mental calculations at Asian emergency centers, which are overcrowded with blunt injury victims of traffic accidents.