2019
DOI: 10.3390/s19224910
|View full text |Cite
|
Sign up to set email alerts
|

A Revisiting Method Using a Covariance Traveling Salesman Problem Algorithm for Landmark-Based Simultaneous Localization and Mapping

Abstract: This paper presents an efficient revisiting algorithm for landmark-based simultaneous localization and mapping (SLAM). To reduce SLAM uncertainty in terms of a robot’s pose and landmark positions, the method autonomously evaluates valuable landmarks for the data associations in the SLAM algorithm and selects positions to revisit by considering both landmark visibility and sensor measurement uncertainty. The optimal path among the selected positions is obtained by applying the traveling salesman problem (TSP) a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 7 publications
(5 citation statements)
references
References 38 publications
0
3
0
2
Order By: Relevance
“…There are some extended traveling salesman problems applications in [18][19][20][21][22]. An effective revisiting algorithm for simultaneous localization and mapping using landmarks is presented by Hyejeong Ryu [23] to choose positions to revisit by taking into account both landmark visibility and sensor measurement uncertainty in TSP. Schiffer et al [24] present integrated planning for electric commercial vehicle fleets: A case study for retail mid-haul logistics networks.…”
Section: Methodsmentioning
confidence: 99%
“…There are some extended traveling salesman problems applications in [18][19][20][21][22]. An effective revisiting algorithm for simultaneous localization and mapping using landmarks is presented by Hyejeong Ryu [23] to choose positions to revisit by taking into account both landmark visibility and sensor measurement uncertainty in TSP. Schiffer et al [24] present integrated planning for electric commercial vehicle fleets: A case study for retail mid-haul logistics networks.…”
Section: Methodsmentioning
confidence: 99%
“…Також не враховано важливість зон території. У [7] представлено алгоритм повторного перегляду для одночасної локалізації та відображення на основі орієнтирів (simultaneous localization and mapping -SLAM). Оптимальний шлях серед обраних позицій отримується застосуванням алгоритму задачі комівояжера.…”
Section: аналіз сучасних досліджень та постановка проблемиunclassified
“…Мінімальне значення енерговитрат досягається при побудові траєкторії, що проходить кожну точку лише один раз та має мінімальну довжину. Таким чином, задачу (6), (7) представимо у вигляді задачі комівояжера.…”
Section: рисunclassified
“…The robot goes back to the parent node after exploring all child nodes during the "induced" loop-closing, and the nearest child or sibling node was selected as the next target according to the previous method. In this paper, we treat finding an efficient loop-closing path, an efficient exploration order, among the parent and the child nodes as solving a TSP [33,34]. Using the shortest traveling distance, dist i,j in Edge new , is the cost matrix of the TSP algorithm, we decide the exploration priority for the current and new nodes.…”
Section: Frontier Segmentationmentioning
confidence: 99%