“…For anyX m j ∈Ĩ m j L,h (j = 1, · · · , n), T ∈ T n , ξ ∈ S n (T ), s ∈ [0, 1] n−1 and l ∈ {N β , · · · , N h }, e n q,r=1 Mat(T,ξ,s)q,r∆q,r(C l (wep)) This can be proved by using (4.11) and the properties of M at (T, ξ, s) and by repeating the same argument as in[10, Lemma 4.5].…”