The containment of infectious diseases is challenging due to complex transmutation in the biological system, intricate global interactions, intense mobility, and multiple transmission modes. An emergent disease has the potential to turn into a pandemic impacting millions of people with loss of life, mental health, and severe economic impairment. Multifarious approaches to risk management have been explored for combating an epidemic spread. This work presents the implementation of engineering safety principles to pandemic risk management. We have assessed the pandemic risk using Paté-Cornell's six levels of uncertainty. The susceptible, exposed, infected, quarantined, recovered, deceased (SEIQRD), an advanced mechanistic model, along with the Monte Carlo simulation, has been used to estimate the fatality risk. The risk minimization strategies have been categorized into hierarchical safety measures. We have developed an event tree model of pandemic risk management for distinct risk-reducing strategies realized due to natural evolution, government interventions, societal responses, and individual practices. The roles of distinct interventions have also been investigated for an infected individual's survivability with the existing healthcare facilities. We have studied the Corona Virus Disease of 2019 (COVID-19) for pandemic risk management using the proposed framework. The results highlight effectiveness of the proposed strategies in containing a pandemic.