A Risk Prediction Model for Adverse Events after Surgical Valve Replacement
Liyou Lian,
Hongxia Yao,
Rujie Zheng
et al.
Abstract:Background. Although several risk-predictive models for patients undergoing surgical valve replacement (SVR) have been published, reports on composite endpoints of adverse events in these patients are limited. This study aimed to establish a novel, easy-to-use prognostic prediction model of composite endpoints in patients following SVR. Methods. According to the inclusion criteria, patients with successful SVR were enrolled. Adverse events, including heart failure hospitalization, stroke, major bleeding, uncon… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.