Machine learning is a tool for analysing digitised data sets and formulating predictions that can optimise clinical decision‐making. It aims to identify complex patterns in large data sets and encode them into models that can then classify new unseen cases or make predictions on new data. Machine learning methods take several forms and individual models can be of many different types. More than 50 models have been approved for use in routine healthcare, and the numbers continue to grow exponentially. The reliability and robustness of any model depends on multiple factors, including the quality and quantity of the data used to develop the models, and the selection of features in the data considered most important to maximising accuracy. In ensuring models are safe, effective and reproducible in routine care, physicians need to have some understanding of how these models are developed and evaluated, and to collaborate with data and computer scientists in their design and validation. This narrative review introduces principles, methods and examples of machine learning in a way that does not require mastery of highly complex statistical and computational concepts.