Inter-shaft bearings are an essential component of aircraft engines, and their operational status determines the safety of aircraft engine operation. Therefore, to improve the accuracy of fault type prediction and enrich the feature information in vibration signals of aircraft engine inter-shaft bearings, this paper proposes an STFT-CNN model based on the AlexNet architecture, extending its application to the research of aircraft engine inter-shaft bearing fault diagnosis. This approach addresses the common reliance on personnel experience for fault type diagnosis in traditional aircraft engine inter-shaft bearing fault diagnosis. Firstly, real vibration fault signals from inter-shaft bearings are collected through experiments to enrich feature information in non-stationary signals using STFT time-frequency methods. Secondly, utilizing the high interpretability of the STFT-CNN model, fault feature data from inter-shaft bearings under various operating conditions are extracted to refine our understanding of fault feature information. Finally, leveraging the robustness of the STFT-CNN model, fault types are classified and predicted. The training process involves comparative analysis using different pooling algorithms, time-frequency analysis methods, and various deep learning network models. The results demonstrate that the STFT-CNN model, employing the maximum pooling algorithm, outperforms other models in predicting inter-shaft bearing faults, achieving an average fault prediction accuracy of 98.8% .