The process of generating histogram from a given image is a common practice in the image processing domain. Statistical information that is generated using histograms enables various algorithms to perform a lot of pre-processing task within the field of image processing and computer vision. The statistical subtasks of most algorithms are normally effectively computed when the histogram of the image is known. Information such as mean, median, mode, variance, standard deviation, etc. can easily be computed when the histogram of a given dataset is provided. Image brightness, entropy, contrast enhancement, threshold value estimation and image compression models or algorithms employ histogram to get the work done successfully. The challenge with the generation of the histogram is that, as the size of the image increases, the time expected to traverse all elements in the image also increases. This results in high computational time complexity for algorithms that employs the generation histogram as subtask. Generally the time complexity of histogram algorithms can be estimated as O(N 2) where the height of the image and its width are almost the same. This paper proposes an approximated method for the generation of the histogram that can reduce significantly the time expected to complete a histogram generation and also produce histograms that are acceptable for further processing. The method can theoretically reduce the computational time to a fraction of the time expected by the actual method and still generate outputs of acceptable level for algorithms such as Histogram Equalization (HE) for contrast enhancement and Otsu automatic threshold estimation.