Galactomannan in industrial Gleditsia microphylla and guar gum was successfully fractionated by gradual precipitation in an aqueous solution with increasing ethanol concentrations. The molecular properties of each fraction were characterized, and the galactomannans were added to photopolymerized hydrogels to test their effects on mechanical properties and swelling capacity. In the series fractions of guar gum, the sample precipitated from 20% EtOH solution had the highest yield, mannose to galactose ratio, and viscosity, and it had a slightly lower molecular weight than that precipitated by 30% EtOH. Correspondingly, the best tensile property of its photopolymerized hydrogel was finally detected. In terms of G. microphylla gum, the precipitation in 30% EtOH solution achieved the highest yield, M/G ratio, and molecular weight value, and it exhibited the best rheological property of all the samples. The hydrogel with the addition of this sample also had the best mechanical properties despite its lower hydroscopicity than the blank hydrogel. The unique properties of each fraction could probably lead to their use as biodegradable alternatives in different applications.