2020
DOI: 10.1007/s11634-020-00384-w
|View full text |Cite
|
Sign up to set email alerts
|

A robust spatial autoregressive scalar-on-function regression with t-distribution

Abstract: HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des labor… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 60 publications
(71 reference statements)
0
2
0
1
Order By: Relevance
“…Penelitian terdahulu yang telah membahas tentang model RSAR. Salah satunya adalah Huang dkk [8] mengenai RSAR mengunakan scalar-on-function regression dengan distribusi-t, Zhi Yang Tho dkk [9] mengenai pengaplikasian estimasi robust pada model spasial autoregresif untuk data hibah federal AS. Yasin dkk [10] menggunakan regresi spasial robust estimasi-M. Mastuti dkk [11] yang menerapkan model RSAR pada pemodelan terhadap data pendapatan asli daerah di pulau Jawa.…”
Section: Pendahuluanunclassified
“…Penelitian terdahulu yang telah membahas tentang model RSAR. Salah satunya adalah Huang dkk [8] mengenai RSAR mengunakan scalar-on-function regression dengan distribusi-t, Zhi Yang Tho dkk [9] mengenai pengaplikasian estimasi robust pada model spasial autoregresif untuk data hibah federal AS. Yasin dkk [10] menggunakan regresi spasial robust estimasi-M. Mastuti dkk [11] yang menerapkan model RSAR pada pemodelan terhadap data pendapatan asli daerah di pulau Jawa.…”
Section: Pendahuluanunclassified
“…Here, this paper introduces the T-distribution in statistics [20]. T-distribution is a special distribution function, which contains parameter degree of freedom n. The smaller n is, the flatter the curve is.…”
Section: B T-distribution Variationmentioning
confidence: 99%
“… Bayesian: The Bayesian estimation methods are present in some papers ,but we only mention these two papers in this part: the Bayesian bandwidth estimation and semi-metric selection for a functional partial linear model with unknown error density [36,37].  Spatial: The spatial variability is considered in many research articles such as The partial functional linear spatial regression autoregressive model with spatial dependence responses [38], with two-stage estimator based on quasi-maximum likelihood estimation (QMLE) method and local linear regression method [39], studying the asymptotic normality of the parametric component, and probability convergence with the rate of the nonparametric component [40], B-spline approximation for slope function and residualbased approach for pointwise confidence-intervals [41], the robust spatial autoregressive model with t-distribution error terms with an expectationmaximization algorithm [42].  Robust: Existing outliers in the data or violations from distributional assumptions yield to the robust methods such as the sieve M-estimator for semi-functional linear model [43], with polynomial splines to approximate the slope parameter and resistance to heavy-tailed errors or outliers in the response [44], different estimators such as M-estimators with bi-square function, GM-estimator with Huber function, LMS-estimator and LTS-estimators [45], estimation based on exponential squared loss and FPCA [46], estimation based on the class of scale mixtures of normal (SMN) distributions for measurement errors and Bayesian framework with MCMC algorithm [47], Robust MM-estimators with B-Spline approximation [48], with modal regression [49] and a modified Huber's function with tail function with a data-driven procedure for selecting the tuning parameters [50].…”
Section: Other Extensionsmentioning
confidence: 99%