“…Many researchers have recently developed various methods for analytic, symbolic, numeric and soliton solutions to solve nonlinear PDEs. These methods can be listed as; the Euler and Adams–Bashforth methods (Roshan et al ., 2023), the extended Laplace transform method (Zhao and Chang, 2022), He’s variational iteration approaches (Khater, 2023a), He’s homotopy perturbation technique (Attia et al ., 2022), extended Fan-expansion method (Khater, 2023b), the Kudryashov’s methods (Ozisik et al ., 2022), Painlevé analysis (Kudryashov and Lavrova, 2023), Lax pairs (Kudryashov, 2021), Lie symmetry (Li and Zhang, 2019), the extended auxiliary equation method (qiong Xu, 2014), the generalized auxiliary equation method (Zhang, 2007; Abdou, 2007; Yomba, 2008), the improved Bernoulli sub-equation function method (Baskonus and Bulut, 2016), the extended mapping approach (Fang et al ., 2005), the simplified homogeneous balance method (Wang and Li, 2014), the modified exp(−Ω( ζ ))-expansion function method (Özpinar et al ., 2015; Baskonus and Aşkin, 2016), He’s variational iteration method (Momani and Abuasad, 2006; Dehghan and Shakeri, 2008), modified F-expansion method with the Riccati equation (Aasaraai et al ., 2013), the modified generalized Kudryashov’s method (Hassan et al ., 2014), the multiple exp-function method (Yıldırım and Yaşar, 2017), the auxiliary equation method (Ma et al ., 2009; Sirendaoreji, 2003), the simple equation method (Nofal, 2016; Zhao et al ., 2013) and residual power series method (Yusuf et al ., 2019).…”