A b s t r a c t M e c h a n i s m s o f P t e r i s v i t t a t a L . t o hyperaccumulate arsenic (As), especially the efficient translocation of As from rhizoids to fronds, are not clear yet. The present study aims to investigate the role of transpiration in the accumulation of As from the aspects of transpiration regulation and ecotypic difference. Results showed that As accumulation of P. vittata increased proportionally with an increase in the As exposure concentration. Lowering the transpiration rate by 28∼67 % decreased the shoot As concentration by 19∼56 %. Comparison of As distribution under normal treatment and shade treatment indicated that transpiration determines the distribution pattern of As in pinnae. In terms of the ecotypic difference, the P. vittata ecotype from moister and warmer habitat had 40 % higher transpiration and correspondingly 40 % higher shoot As concentration than the ecotype from drier and cooler habitat. Results disclosed that transpiration is the main driver for P. vittata to accumulate and redistribute As in pinnae.